
Received: 30 July 2016 Revised: 29 June 2017 Accepted: 3 August 2017

DOI: 10.1002/smr.1893

R E S E A R C H A R T I C L E

Identifying unusual commits on GitHub

Raman Goyal1 Gabriel Ferreira2 Christian Kästner2 James Herbsleb2

1Indian Institute of Information Technology,

Allahabad, India
2Carnegie Mellon University, Pittsburgh, PA,

U.S.A.

Correspondence

Raman Goyal, Journals Production

Department, John Wiley & Sons, Ltd, The

Atrium, Southern Gate, Chichester, West

Sussex, PO19 8SQ, U.K.

Email: raman.goyal111@gmail.com

Abstract

Transparent environments and social-coding platforms as GitHub help developers to stay abreast

of changes during the development and maintenance phase of a project. Especially, notification

feeds can help developers to learn about relevant changes in other projects. Unfortunately, trans-

parent environments can quickly overwhelm developers with too many notifications, such that

they lose the important ones in a sea of noise. Complementing existing prioritization and filtering

strategies based on binary compatibility and code ownership, we develop an anomaly detection

mechanism to identify unusual commits in a repository, which stand out with respect to other

changes in the same repository or by the same developer. Among others, we detect exception-

ally large commits, commits at unusual times, and commits touching rarely changed file types

given the characteristics of a particular repository or developer. We automatically flag unusual

commits on GitHub through a browser plug-in. In an interactive survey with 173 active GitHub

users, rating commits in a project of their interest, we found that, although our unusual score is

only a weak predictor of whether developers want to be notified about a commit, information

about unusual characteristics of a commit changes how developers regard commits. Our anomaly

detection mechanism is a building block for scaling transparent environments.

KEYWORDS

anomaly detection, information overload, notification feeds, software ecosystems, transparent

environments

1 INTRODUCTION

Collaborative development in open source, software ecosystems, and also industrial software systems relies increasingly on decentralized deci-

sion making.1-4 Interdependent components evolve independently and often with little explicit collaboration. Backward–incompatible changes that

break modularity and produce rippling effects on downstream components are often necessary to avoid opportunity costs (not fixing mistakes, sti-

fling change in the face of evolving requirements) and common in practice.5-15 In addition, components may change to add new functionality that

developers might want to adopt. Identifying relevant changes and reacting to them if needed can create a significant burden on developers during

maintenance.10,15-20

Seeds of a solution can be found in today's transparent environments or social-coding platforms such as GitHub, LaunchPad, and Bitbucket. These

environments provide mechanisms for notification and exploration, that help developers to stay abreast of activities across collections of projects

without central planning.21,22 For example, on GitHub, developers can watch projects and receive a notification feed of activities in watched projects,

such as push events or bug reports. These tools work well at small scales but break down for large projects where imprecise and insufficiently rich

notification mechanisms lead to information overload from notification cluttering. By inspecting publicly available events on GitHub, we found that

active developers typically receive dozens of public event notifications a day and a single active project can produce over 100 notifications per

day (and many more when including notifications of indirect dependencies). When we previously interviewed active GitHub users, many reported

drowning in change notifications, for example, stating I stopped with the email—now I use the GitHub notifications page. And the volume is a problem and

I just wander through GitHub activity streams occasionally. [But] it is very much a crap shoot to actually get useful information from the feed.16,22

A key to scale transparent environments is to identify relevant notifications and route them to affected or interested developers. There are many

possible reasons why a change might be relevant for a developer, including the following explored in prior work:

• Identify breaking changes: Typically, most changes are backward compatible. Notifications about the rare breaking changes are of especial impor-

tance to maintainers of affected downstream projects. Continuous integration platforms can help to highlight changes that break the system.

J Softw Evol Proc. 2017;e1893. wileyonlinelibrary.com/journal/smr Copyright © 2017 John Wiley & Sons, Ltd. 1 of 16
https://doi.org/10.1002/smr.1893

https://doi.org/10.1002/smr.1893
http://orcid.org/0000-0003-3628-1388


2 of 16 GOYAL ET AL.

In addition, Holmes and Walker designed a system that statically detects certain incompatible interface changes in Java to filter notifications

correspondingly.19

• Identify critical fixes to vulnerabilities: Patched vulnerabilities in upstream projects are typically of high importance to update the dependency to

a newer version. The service Gemnasium tracks dependencies among Ruby packages and notifies registered package maintainers if an upstream

dependency has a known vulnerability (CVE). In addition, several simple heuristics and learning approaches can identify bug fixing commits.23,24

• Identify relevance based on prior activity: In large code bases, developers may be interested only in notifications about code that relates to their own

activities, such as notifications about changes in code that they have written. Padhye et al model relevance based on simple heuristics regarding

prior modifications, code ownership, and commit messages to similarly reduce information overload.20

In this paper, we explore a different complementary strategy to identify another class of relevant notifications:

• Identify unusual changes: We identify changes that are unusual or stand out with respect to other changes in the repository. For example, commits

that are particularly large, changes to artifacts in a programming language not commonly used in the project or by that developer, or changes with

exceptionally long commit messages might be worth noting. We developed a programming-language-independent anomaly detection mechanism

that identifies outliers regarding other changes in the same repository or other changes by the same developer.

We detect outliers using statistical models capturing common characteristics of commits within a project or by a developer. Based on those

models, we provide an anomaly score for each commit. The anomaly score can be used to prioritize and filter notification feeds, in concert with

other detection approaches, such as detecting breaking changes. In addition, anomaly scores can highlight unusual commits in the revision history

to support exploration and inspection and to point out unusual characteristics during code reviews to focus the reviewer's attention. We imple-

mented a prototype of our anomaly detection mechanism and provide a front end through a browser plug-in that injects anomaly scores, including

an explanation, into the commit history on GitHub pages.

In an evaluation, we analyze to what degree our model can predict changes developers will identify as unusual and to what degree we can identify

commits about which developers want to be notified. We design an online survey with which participants rated commits in a repository of their

choice. In each selected repository, we select 5 random commits with different anomaly scores (stratified sampling) and ask participants whether

they judge the commit as unusual and whether they would want to be notified. We found that our unusual score only weakly reflects our participants'

notion of unusualness and is also only a weak predictor of whether developers want to be notified (to be expected as we capture only a subset

of characteristics of important commits), but we also found that information about unusual characteristics about commits are actionable. When

provided with additional information about why a commit is a statistical outlier, participants often revisited their position and identified commits as

relevant for a notification.

Overall, we make the following contributions: (1) We design an anomaly model based on commit characteristics to identify unusual commits in a

repository and by a developer. (2) We tailor statistical learning methods to build such models for Git repositories. (3) We integrate anomaly scores

and explanations into the GitHub web page using an implementation based on a browser plug-in. (4) We design an experimental setup to learn about

the importance of unusual commits in a repository of the participant's choice. (5) We evaluate our anomaly model with 173 GitHub developers,

showing that despite weak predictive power, information about statistical outliers is actionable.

2 INDICATORS FOR IMPORTANT COMMITS

There are many reasons why a commit might be considered “unusual” or important. In this work, we refer to commits as unusual if they are statistical

outliers according to some criteria, such as commits that are substantially larger or were committed at an unconventional time of day. We inten-

tionally used a broad and subjective term to cover a wide range of different outlier characteristics. Our mechanism is flexible enough to incorporate

additional characteristics and select and weigh characteristics depending on developer preferences.

As part of a presurvey of our evaluation, which includes demographic questions about the participants' experience and knowledge about the

selected repository, we asked our participants (professional and academic GitHub users, see Section 4 for details) 2 open questions:

• Some commits stand out among all commits in a repository. What characteristics make commits stand out?

• What kind of commits do you usually pay attention to?

With both questions, we elicit commit characteristics that developers use to distinguish important commits from unimportant ones.

Among our participants, the following indicators for important commits were very commonly mentioned (at least by 30 developers):

• Commits that introduce new features (often associated with feature requests); for example, one participant claimed interest in “commits that

add nice features to the project.”

• Commits that signify major development steps, usually related to merging, milestones, and releases.

• Commits that are large in size (in terms of lines of code or files changed); for example, one participant wrote that changes stand out if they include

“extensive changes, lots of churn.”

• Commits that fix bugs or security issues.

• Commits that change code about which the developers have particular knowledge or that could affect their current tasks (code ownership,

dependencies).



GOYAL ET AL. 3 of 16

• Commits with poor (nondescript, short) or overly complicated commit messages; for example, one participant expressed to pay particular

attention to “commits that have very detailed commit messages.”

Many developers (at least 10) also mentioned the following indicators:

• Commits with lengthy and controversial discussions, including discussions on GitHub, in mailing lists, on IRC, and on social media sites.

• Commits that perform major restructuring of systems or subsystems such as major shifts in an API, modifications to core functionality or

abstractions, or changes affecting platform integration.

• Commits that are contributed by developers outside the regular team members or by inexperienced developers; in this case, the major concern

is with the quality of the commit and, consequently, with the longevity of the project; for example, one participant expressed “I look at the author,

lines changed and description, in that order.”

• Commits that break code, as identified by continuous integration tooling.

Other but less frequent answers included the following:

• Commits addressing nonfunctional properties such as performance.

• Commits that affect essential project dependencies, potentially breaking compatibility.

• Commits made by the owner of the repository.

• Commits that use specific label, tags, or prefixes in their messages.

Overall, we can see that the reasons for paying closer attention to commits can vary widely. Several facets can be addressed with simple checks

(eg, highlighting merge commits, identifying keywords in commit messages, counting comments on GitHub); others have already been addressed

by alternative strategies (bug fixes, code ownership, breaking changes), but many indicators align well also with our strategy of modeling statistical

outliers regarding commit characteristics, making it worth exploring those as a complementary detection mechanism. One can directly or indi-

rectly relate statistical outliers to some of the indicators given by developers: for example, large commits (indicating also new features25 or major

restructuring), commits with short or long commit messages, changes in rarely changed files, and changes untypical for a developer.

3 DETECTING UNUSUAL COMMITS

3.1 Overview

We detect unusual commits as statistical outliers regarding various commit characteristics. That is, we compare characteristics of a specific com-

mit with common characteristics of other commits in the same project or by the same developer. We build on a large body of work on anomaly

detection,26-29 typically used for detecting inconsistent inputs, detecting credit card fraud, and similar tasks.

Specifically, we build profiles that characterize statistical distributions of various commit characteristics (metrics). We learn concrete profiles from

past commits and use the profiles to calculate an anomaly score for a new commit that describes how representative the commit is with regard to

that profile. For example, we build a profile that describes the size of all past commits in a project (measured in lines of code), as the one for node.js

shown in Figure 1B—from that distribution, we can learn that a commit with 500 changed lines of code is larger than 92% of all previous commits.

We normalize and aggregate the anomaly scores from multiple profiles for various characteristics and derive an overall anomaly indicator. For each

individual anomaly score, we can provide an explanation for why a commit receives a high score as exemplified in Figure 2. Based on the use case,

we then rank the commits within a time frame by their anomaly indicator, filter commits in a notification feed with a given threshold, or merely show

the indicator and explanation to developers.

In the following, we describe the analyzed characteristics, as well as the modeling and learning approaches used to build statistical models for

these characteristics, and the derivation and aggregation of anomaly scores.

FIGURE 1 Commit sizes in lines of changed code in the node.js repository: A, histogram and B, empirical and fitted cumulative distribution functions



4 of 16 GOYAL ET AL.

FIGURE 2 Node.js commit with textual explanation about its unusualness

3.2 Commit characteristics (metrics)

While the measured commit characteristics can easily be extended, we selected 10 initial easy-to-measure characteristics regarding size of the

change, size of the commit message, time committed, and changed file types. We summarize all measured commit characteristics in Figure 1.

Size metrics measure the size of a change (1) in terms of added or removed lines, according to a text-based diff between the 2 revisions, and (2)

in terms of files added, removed, or changed. Renamed files are considered both as removed and as added in our current implementation. We use

these simple size metrics, because very large commits tend to stand out as also indicated by participants in our study. Furthermore, Hindle et al

found in a manual investigation of commits that large commits tend to perform rare architectural changes and tend to signify perfective rather than

corrective changes.25 We specifically distinguish between adding and removing codes, as they cover different change scenarios (eg, new feature or

cleanup) that may be more or less representative of change in a repository or by a developer.

We measure the size of the commit message in words. Our intuition is that exceptionally long commit messages tend to explain nonroutine

commits. At the same time, in projects with strong commit message discipline, short or missing messages may be considered as outliers.

We measure the time of day of a commit to detect commits at an unusual time (for that developer or that project). This might, for example, identify

unusual late-night commits for a developer with regular working hours, which could be an indicator for an urgent change or a change under time

pressure. Because we compare the times only against other commits by the same developer or in the same repository but not against external

policies or expectations, we can ignore time zones and simply measure the time since midnight in UTC.

Finally, we track the types of files changed (as detected by their file extension) and the number of files changed per type in a commit. The intuition

is that commits may change files of types that are rare in that repository (such as .c files in a project focused on JavaScript) or that are rarely ever

changed (such as license files). Similarly, for a developer typically working on .html and .css files, a change to the Java part of the repository might be

unusual.

We build profiles both with regard to the distribution of file types in the repository and the absolute and relative distribution of file types in typical

commits.

3.3 Profiles

For each of the metrics described in Table 1, we build one or more profiles. For most metrics, we build a profile per project and a profile per developer.*

We skip developer profiles if the number of prior commits by that developers does not exceed a configurable threshold (set to 20 in our evaluation).

*At this point, we build developer profiles per project, but it would easily be possible to build developer profiles based on their commits across multiple projects, eg, collecting projects the developer
contributes to from the developer's public events on GitHub.



GOYAL ET AL. 5 of 16

TABLE 1 Commits characteristics

Size of the Commit Size of the Commit Message

Lines of code added Length of the commit message (in words)

Lines of code removed Time

Lines of code added or removed (sum) Time of day of the commit (hours since midnight/UTC)

Number of files added File Types Changed

Number of files removed List of file types changed (file extensions)

Number of files changed per file type

Depending on the commit characteristics and their typical distributions, we use different kinds of statistical models with different learning and

detection steps, as we will explain next.

3.3.1 Size-based profiles

Sizes of commits and commit messages tend to follow a long-tail distribution with most commits being fairly short and only few very large commits.

For example, we show the distribution of commits in the node.js repository in Figure 1. As most commits are short, we only detect anomalies at the

long end of the distribution. We sampled over 100 popular GitHub repositories, and after our evaluation, we also checked the commit sizes of the

173 repositories we investigated, confirming that all follow such long-tail distribution.

Given a learning set of commits, a simple profile could consist of an empirical cumulative distribution function (ecdf) that computes which per-

centage of commits is smaller than a given commit. We could then consider a commit larger than, say, 95% of all commits as anomalous. For example,

we may learn in node.js that 97% of all commits in the learning set are smaller than 2770 changed lines of code (see Figure 1B) and thus report an

anomaly score of 0.97 for a commit changing 2770 lines. However, an empirical cumulative distribution function is based exactly on the learning

set (danger of overfitting) and cannot distinguish between 2 commits that are both larger than the largest observed commit; for example, commits

with 600 000 and 6 000 000 changed lines both would receive the same anomaly score of 1 in node.js. Instead, we abstract the actual observation

by fitting a cumulative distribution function (cdf) that describes the observations in the learning set with few parameters. Specifically, we learn an

exponential probability distribution with a cdf in the form

F(x) = 1 −
(
𝛼

x

)𝛽

.

We estimated the parameters 𝛼 and 𝛽 using linear regression on the ecdf (technically encoded as log(1 − y) = 𝛽 ∗ log(𝛼) − 𝛽 ∗ log(x), which has the

form Y = A + BX, such that we can learn A and B and subsequently 𝛼 and 𝛽). In our node.js example, we learn the cdf F(x) = 1 − (2.5597∕x)0.44139

as plotted over the ecdf in Figure 1B, which yields 2 high but distinguishable anomaly scores 0.9957 and 0.9984 for 600 000 and 6 000 000 lines,

respectively.

All size-based profiles return an anomaly score of 0.5 for an average commit and values close to 0 and 1 for outliers. Because of the long-tail

distribution, we focus only on outliers at the long end.

3.3.2 Time-of-day profiles

To build a profile of typical times at which commits are created in a repository or by a developer, we build a histogram counting the number of commits

per time of day (in 1 h intervals since midnight/UTC): Function tod(x) returns the number of commits in that hour. We do not learn a function, but

to avoid relying too much on noisy empirical data, we take a 3-hour average and compare it with all commits to get the probability of a commit at

that hour:

p(x) = tod((x − 1) mod 24) + tod(x) + tod((x + 1) mod 24)
3 ·

∑23
i=0 tod(i)

.

If all commits were randomly distributed, we would expect 1∕24 of all commits per hour. As for size-based profiles, we want our anomaly score to

report 0.5 for an average commit and 0 and 1 for outliers. Again, we only care about outliers on one end: regarding commits at times with few other

commits. We therefore transform the probability value, such that the baseline 1∕24 probability yields a 0.5 anomaly score:

F(x) = 1 − p(x)log24 2 = 1 − p(x)0.2181.

Further adjustment is possible in the aggregation and normalization process to give larger weight to smaller outliers (see below).

In Figure 3, we show as example the time-of-day profile for the atom text editor repository. In this repository, we can observe fairly regular commit

times. In the past, only 0.7% of all commits were made around 10 AM UTC (3-h average), yielding an anomaly score of 0.67, whereas commits around

11 PM UTC are common and yield an anomaly score of 0.40.

3.3.3 File-type profiles

In line with Herraiz et al,30 we observed that most repositories are dominated by files of few types, for example, in node.js, 76% of commits in the

repository affect C/C++, JavaScript, or HTML files, whereas Ruby files are only touched in 0.1% of all commits. We consider changes to file types



6 of 16 GOYAL ET AL.

FIGURE 3 Time-of-day distribution of commits in the atom repository

that are rarely changed in the repository as unusual. We distinguish file types t ∈ T by their file name's extension, but this could easily be refined

by analyzing the files' content or merging different file extensions describing the same class of file types (eg, .c and .h). We actually build multiple

profiles based on file types, counting different aspects. Because we do not have a null hypothesis of how file types would be distributed across

random commits (the set of file types T is open ended), we work directly with the empirical distributions and we do not have an expected anomaly

score for an average commit.

In a first profile, we collect how frequently files of a given type were changed across all commits in a learning set. Function ft(t) returns how many

files of type t have been changed in a commit, summed overall commits in the learning set. We derive an anomaly score for each file type based on

the relative frequency of changes to this file type in the repository as follows:

F(t) = 1 − ft(t)∑
t∈T ft(t)

. For a given commit, we return the maximum anomaly score among all file types occurring in that commit.

In a second profile, we collect the percentage of commits that modify a file of a given file type. The anomaly score is simply the relative number

of commits that do not modify a file of that type. That is, in contrast to the previous profile, we do not distinguish how often files have been changed

in those commits. This profile is similar to the first, but less biased toward individual commits that change many files of one type. For example, with

Ruby files occurring only in 0.1% of all commits, a Ruby file in a commit to the node.js repository would receive an anomaly score of 0.999.

In a third profile, we characterize which files are commonly changed together. This profile is created by grouping list of file types changed. We

derive an anomaly score for every pair of file types (F(t, u)). The intuition is that certain kinds of files may be common in the repository but are rarely

changed together, such as JavaScript and markdown files. The anomaly score is computed by comparing the number of commits that change both

file types against the number of commits of the file type that is changed less often. For example, in node.js, Javascript files are changed in 49% and

markdown files in 12% of all commits; they are changed together in only 4% of all commits, yielding an anomaly score of 1−0.04∕0.12 = 0.67. Again,

the highest score for any pair of file types contained in a commit is reported.

3.4 Normalizing, aggregating, and explaining results

We described a number of profiles, and additional profiles can easily be added for other commit characteristics, including more sophisticated and

language-dependent ones (eg, conformity with the common vocabulary used in the project or with common syntactical structures31). It is also

straightforward to learn profiles for other baseline sets, such as all commits of a developer (across multiple projects) or all commits within a set of

projects. Which profiles to use and how to weigh them may be configured by personal preference. We design the anomaly detection system with

a general normalization and aggregation framework that combines the anomaly scores of several profiles into a single indicator. In addition, we

provide facilities to explain the scores, which can help user acceptance in many usage scenarios.

The aggregation function should support 2 scenarios: On the one hand, if a single high anomaly score is found in the project, the aggregated

anomaly indicator should have a high value. That is, it should not be possible to hide an anomaly regarding one characteristic with typical parame-

ters of other characteristics. On the other hand, if several profiles indicate anomalous results, the aggregated indicator should be higher than the

individual scores. To that end, instead of an arithmetic mean, we use an associative and commutative aggregation operator⊕ ∶ a⊕b = a+b−(a ∗ b),
which supports both scenarios. Within the range [0,1], a ⊕ b ⩾ max(a, b) and within the range ]0,1[, a ⊕ b > max(a, b), ie, 2 anomaly scores support

each other. For missing profiles, eg, when the developer has not sufficient prior commits to build a profile, we substitute the default anomaly score

0.5 of an average commit in the aggregation process.

To adjust individual profiles with weights𝛼i, we transform each anomaly score xi using the transformation 1−(1 − xi)𝛼i . We use this transformation,

because it produces well-distinguishable values especially for the high end range of anomaly scores between 0.95 and 1. In most profiles that gave

high end range of anomaly scores, we normalize values using the transformation to emphasize that range. Without normalization, the aggregation

operator ⊕ leads to values close to 1 that are nearly indistinguishable, even for relatively low anomaly scores as 0.8. In our evaluation on the basis

of preliminary analysis, we uniformly normalize all profiles using 𝛼 = 0.067, which maps anomaly scores in the relevant range to much lower values,

eg, 0.95 normalizes to 0.18, 0.999 to 0.37, and 0.99999 to 0.53.

While an overall normalized and aggregated anomaly indicator may be used, among others, to prioritize or filter notifications, in many scenarios,

an explanation may be even more useful than a numerical score. In addition to a numerical score, every profile can offer a textual explanation, such

as “.yml files were changed—such files are rarely changed in this repository (fewer than 0.07% of all changes)” or “The number of files changed is in



GOYAL ET AL. 7 of 16

FIGURE 4 Anomaly scores injected into the Github history page using a browser plug-in. Anomalies on commits are highlighted with background
colors, tool tips show explanation, and a button links to additional information on our server

the normal range for commits by <author> (3 files).” In our prototype, as shown in Figures 2 and 4, we highlight the explanations from the 5 profiles

that have the highest individual anomaly scores. In addition, we can visualize the empirical distributions in the profiles through graphs as exemplified

in Figures 1 and 3.

3.5 Implementation

We have implemented the anomaly detection mechanism as a web-based system with a front end that injects results into the GitHub page through

a browser plug-in for Chrome.

The back end clones the repository and extracts characteristics of existing commits from the Git database (including running diffs on all commits).

If the repository was previously cloned, it pulls new changes and collects the commit characteristics for those changes. Subsequently, it builds the

profiles as described above and computes anomaly scores on demand. The back end is implemented as a Java servlet, interacting with Git through

the JGit library, and uses R for statistical computations.

The front end is implemented as a browser plug-in for Chrome that rewrites the GitHub pages within the web browser. When a user browses a

GitHub page of a repository, the plug-in queries the back end for anomaly indicators. On the commit history page of a project, the plug-in injects the

anomaly indicator and its explanation into the page for every commit, as shown in Figure 4. In a similar way, the plug-in could rewrite the notification

page and extend the settings page to customize weights and thresholds of the anomaly detection mechanisms. Alternatively, one changes the plug-in

design to present a ranking of unusual changes in a period. There are many different forms of presenting this to the user, but this discussion is outside

the scope of this study.

Both back end and front end are available as open-source project at github.com/goyalr41/UnusualGitCommit and github.com/goyalr41/

UnusualCommitExtension.

4 EXPERIMENTAL VALIDATION

We anticipate that changes that are statistical outliers with respect to certain commit characteristics are relevant to developers. Our hypothesis is

2-fold: We can reliably and efficiently use statistical outliers to detect unusual commits, and developers want to be notified about unusual commits.

With an interactive survey among 173 GitHub developers, we evaluate accuracy, usefulness, and practicality of our approach. Specifically, we

investigate the following 3 research questions:

RQ1 Does our approach identify commits that developers consider as unusual? Our first goal is to identify whether the developers' notion an unusual com-

mit can be approximated with our notion of unusualness in terms of statistical models over commit characteristics. We expect that developers

have a broad notion of what makes a commit unusual (see Section 2), but that the modeled commit characteristics play an important role.

RQ2 Do developers want to be notified about unusual commits? Our second goal is to identify whether high anomaly scores are a good measure to

filter or prioritize notifications, that is, whether our anomaly scores highlight important commits and whether they are actionable. We will

also investigate to what degree providing additional information about commit characteristics changes the developers' perception and which

commit characteristics they consider as important.

RQ3 Can statistical outliers be computed efficiently? Our final question aims to investigate practicality in everyday settings and measures the

performance of our approach in terms of time required to build and evaluate our models.

github.com/goyalr41/UnusualGitCommit
github.com/goyalr41/UnusualCommitExtension
github.com/goyalr41/UnusualCommitExtension


8 of 16 GOYAL ET AL.

4.1 Experimental setup

To answer our research questions, we conducted an experiment in form of an interactive online survey with GitHub developers as illustrated in

Figure 5. In a nutshell, we ask each participant to select a GitHub repository of their choice and we select 5 commits from that repository spanning

a range of anomaly scores about which we ask questions regarding unusualness and importance.

Our experiment intentionally deviates from the common setup with experimental and control groups. We assess how our participants judge

the unusualness and importance of commits without revealing our judgment (no treatment). Subsequently, we ask our participants to assess the

same commits again with additional anomaly information provided to identify how such information changes their view of the unusualness and

importance of commits (within-subject design).

We complement that setup with a pre- and post-survey in which we ask additional questions about demographics and about which commit char-

acteristics are relevant to them. We conducted the evaluation after a pilot run with 26 participants in which we ensured understandability and a

reasonable length and narrowed down relevant questions; see below.

At the beginning of the survey, we asked our participants to choose a GitHub repository with which they are familiar, but to which they are not the

main contributor. We suggest that the repository should have multiple contributors (2 or more) and at least 50 commits. When they provided their

GitHub username, we offered a selection of public repositories they watch. We designed these criteria to simulate the scenario in which a developer

might watch another repository during development or maintenance.

In the back end, we then clone that repository, build the profiles, and compute anomaly scores for up to 200 most recent commits. Among

those recent commits, we select 5 commits with different anomaly scores (stratified sampling). We divide the commits into 4 groups by aggregated

anomaly indicator: the 5% with the highest anomaly indicator, the 5% with the next highest anomaly indicator, the 60% with the lowest anomaly

scores, and the remaining 30%. Using stratified sampling, we then selected one commit of our sample from the first group (very high anomaly indi-

cator) as very unusual, 2 commits from the second group (high anomaly indicator) as unusual, and 2 commits from the third group (low anomaly

indicator) as normal (see Figure 6). We decided to show a total of 5 commits, based on considerations regarding survey length and feedback from

the pilot survey.

While cloning the repository and computing profiles in the back end (in part to bridge the time, typically below a minute; see RQ3 below), we

show developers a presurvey with demographic questions, questions about their relationship to the repository (eg, whether they are familiar with

it, monitor it, or contribute to it) and open-ended questions regarding characteristics of commits that make commits to stand out and regarding to

which kind of commits they tend to pay extra attention. We already discussed the key insights from the open-ended questions in Section 2.

FIGURE 5 Experimental setup—survey steps

FIGURE 6 Stratified sampling—division of commits in groups of different degrees of unusualness



GOYAL ET AL. 9 of 16

TABLE 2 Survey questions

Q1a: This commit is important to me.

Q1b: I would want this commit to be brought to my attention.

Q2: It seems to be an unusual commit

TABLE 3 Survey question in pilot study

P1: I would want this commit to be brought to my attention.

P2: I would care about this commit.

P3: This commit is important.

P4: It seems to be an unusual commit

In the main part of the survey, we show the sampled commits in a random order. We present each commit separately in a page that closely mirrors

GitHub's view on a commit, followed by 2 questions about this commit's unusualness and importance on a 5-point Likert scale.

Subsequently, we showed them each commit again in the same order, but this time with additional information in the form of the textual explana-

tions (see Section 3.4) of the 5 highest anomaly scores as illustrated in Figure 2. We again ask questions about unusualness and importance on the

same 5-point Likert scale to assess whether the additional information changes their opinion.

After completing the main part of the survey, we asked final questions about which commit characteristics (see Table 1) they consider as useful

indicators. We assess their opinion on a 5-point Likert scale.

4.1.1 Question selection

We used the questions shown in Table 2 in our survey. When showing the commits for the first time, we asked questions Q1a and Q2, and when

showing them again with additional information, we asked Q1b and Q2.

The selection of questions was influenced by several insights from the pilot study. Initially, we considered more questions on each commit as

shown in Table 3. We originally intended to capture multiple facets of unusualness, but found that pilot questions P1 to P3 all strongly correlate

and do not provide complementary insights. Therefore, we reduced the number of questions to 2, corresponding to our 2 research questions. The

strong correlation (P1 and P2 correlated strongly; correlation coefficient 0.67, p < 3.1e − 19) allowed us to ask 2 different questions to assess the

same information about importance of the commits, reducing a possible consistency bias in our participants (see also threats to validity).

4.2 Recruitment and participants

As participants for our evaluation, we aimed to recruit active GitHub developers who could pick a project of their interest with multiple contributors

and at least 50 commits. We recruited active GitHub developers on the web. We actively publicized our survey through social networks and sent

emails to active GitHub developers. We identified suitable candidates from publicly available activity feeds (aggregated through the GHTorrent

project32). We selected 39 131 developers that have filed or changed at least one pull request and that have started watching at least 5 repositories

between January 2015 and August 2015. We sent personalized emails to 2846 of them (randomly selected). In total, 173 participants completed

the survey, assessing 503 commits in 173 distinct repositories.

In Figure 7, we summarize the demographic information about our participants and their selected repositories, both presented to them as Likert

scales. Over 63% have more than 5 years of software engineering experience and 62% report to use GitHub for over 3 years. In addition, 91% are

familiar or very familiar with the selected project and 68% monitor commits in that project at least occasionally. The median number of commits

and contributors of the analyzed repositories were 914 and 25, respectively. In addition, the repositories have median size of 414 721 lines across

all nonbinary files in the repository.

For the pilot study, we personally invited PhD students and researchers at a workshop on feature-oriented software development.† We handed

interested participants a tablet to complete our survey. In total, 26 participants completed the survey in our pilot study.

4.3 Analysis procedure

To answer our research questions, we analyzed 173 complete responses. Those do not include 21 incomplete responses or any responses from

our pilot study. Because all our measures are ordinal, we use Spearman's rank correlation coefficient to assess correlations among ratings. For the

open-ended questions discussed in Section 2, we followed standard open coding practices.33

† http://www.fosd.de/meeting2015



10 of 16 GOYAL ET AL.

FIGURE 7 Demographics information about participants and repositories

FIGURE 8 Comparison of agreement level between our notion and the developers' notion of unusualness. The x axis describes our anomaly
judgment as normal (N; bottom 60%), unusual (U; top 10%), and very unusual (VU; top 5%); the y axis describes the participants rating regarding
unusualness from strongly disagree (1) to strongly agree (5) that the commit is unusual, resulting in 15 possible combinations. Data are jittered to
show frequency of answers; boxplots are overlayed to highlight the distributions

4.4 Results

4.4.1 RQ1: predicting unusual commits

Regarding our first research question (Does our approach identify commits that developers consider as unusual?), we found that our anomaly score is a

very weak predictor of whether developers rate a commit as unusual (correlation coefficient 0.12 0, P < .0056). As visible in Figure 8A, our anomaly

score correctly predicts many of the commits that participants rate as highly unusual with high anomaly scores (high recall; 68% of commits that

participants rate with 4 or 5, we classified as unusual or very unusual), but developers do not consistently rate commits with high anomaly scores as

unusual (low precision; only 40% of commits we selected as highly unusual were rated as 4 or 5 by participants).

The low predictive power can be explained by the broad notion of “unusualness” that reasonably includes many facets not covered by our models

but that can be added from other sources, as discussed in Section 2. In fact, if we perform the same analysis only for the 38 participants (22%) that



GOYAL ET AL. 11 of 16

referred to some notion of size when asked about which commits stand out, we can predict unusual commits more reliably for those developers

(correlation coefficient 0.29, P < .0039; Figure 8C).

Finally, we evaluated how showing developers' additional information about commits influences their judgment of unusualness. We found that

in general, developers tend to agree more with our notion of unusual given additional information as shown in Figure 8B, but the effect is again

relatively weak (correlation coefficient 0.24, p <3.8e-08).

In summary, our model of unusual commits is only a weak predictor of how developers rate unusualness. It explains to a large degree size-related

criteria and is a better predictor for the many developers who equate unusualness with size. When presented with additional information about

commits, developers tend to agree more with our notion of unusualness.

4.4.2 RQ2: unusualness to filter notification

Whereas RQ1 only investigated whether our notion of unusual matches the participants' notion, RQ2 now investigates to what degree the results

are actionable.

The initial result is negative again: Developers do not consider unusual commits as important. This holds both for our notion of unusualness in

terms of our anomaly score (correlation 0.16; P < .00022) and even for the developers' own rating of unusualness (correlation 0.1; P < .025).

However, we found that information that explains unusual aspects of a commit (see Figure 2) significantly influences developers' opinions about a

commit. That is, while being considered as unusual is not actionable, considering information about why a commit is a statistical outlier is actionable.

As shown in Figure 9, with additional information, developers more frequently changed their judgment of importance to a higher value for com-

mits we rated as very unusual, than they downgraded their rating. The number of changes is also significantly higher than what we observed in the

pilot when we asked both questions for the same commit without additional information (correlation dropped as expected from 0.67 in the pilot to

0.47 in our study). Similarly, the developers' unusualness ratings correlate stronger with their rating of importance given the additional information

(correlation 0.39 instead of 0.1).

Finally, we asked developers which kinds of statistical outliers or indicators would be useful to them. Figure 10 summarizes their opinion expressed

using a 5-point Likert agreement scale, showing that the participants think that most of the profiles are useful; in fact, only the time-of-day profile

received controversial opinions.

In summary, developers consider some commits as unusual, but those are not necessarily commits that they consider to be important and want to

be notified about. However, providing explanations for why commits are statistical outliers in the context of a repository or for a developer provides

actionable insight in that developers often want to be notified about such outliers. Overall, this shows that the anomaly score is indeed just one

among many indicators that signify whether a commit is important to developers (cf Section 2). Nonetheless, the results also show that the anomaly

score is actionable and can be a useful contributor to filtering and prioritizing notifications (in concert with other mechanisms), but that explanations

are important and appreciated.

FIGURE 9 Changes in developer's perception of commits' importance: A, normal commits, B, unusual commits, and, C, very unusual commits. Each
plot shows the difference between 2 ratings (before and after revealing additional information, rated on strongly disagree (1) to strongly agree (5)
that the commit is important) as arrow for all commits in a group of commits; commits are sorted by the change. Upward arrows indicate that
participants judged the commit as more important with additional information; longer arrows indicate a larger change; dots indicate consistent
ratings

FIGURE 10 Developers' opinions about the usefulness of specific indicators



12 of 16 GOYAL ET AL.

FIGURE 11 Time required to compute profiles for repositories in seconds (few outliers omitted)

4.4.3 RQ3: efficiency

Learning and evaluating profiles is relatively cheap. When learning a profile, we need to clone the repository and gather commit characteristics for

past commits, which is the dominant cost in the entire process. Building the profiles subsequently is fast; it involves computing histograms and linear

regression and data sets of moderate size (20-7974 commits for 90% of all projects), whereas looking up the anomaly value for a commit requires

merely evaluating simple formulas and is essentially instantaneous. Incrementally refining profiles over time is similarly fast, as we only need to

pull new changes, collect commit characteristics for new commits, and update existing profiles (incrementally or recomputing them). To this day, we

have created profiles for 252 GitHub projects. For almost all repositories, profiles can be built within 1 minute as shown in Figure 11. Only very few

outliers for very large projects require longer initial computation time of up to 20 minutes for one 800 MB repository of a game engine.

4.5 Exploratory analysis

To understand more about how our profiles relate to the developers' notion of unusualness, we performed an additional ex-post exploratory anal-

ysis on our data. Specifically, we explore which profiles had the strongest predictive power in our data set, which may provide insights for further

research. To that end, we use an automated model selection approach, specifically stepwise regression using the glmulti R package.‡ The algorithm

exhaustively computes logistic regression models while trying to minimize the set of profiles that maximize the explained variance of the outcome

variable (developers' notion of unusualness). We use the profiles standardized scores from the past commit data and the developers judgment about

each commit unusualness as input to the algorithm. We compute best models for their answers before and after we show them information about

the unusualness of commits.

The best model for unusualness before showing additional information explains 7.06% of the variance (p <1.86e-11) and is composed by 6 profiles

(with decreasing predictiveness): number of lines of code changed by the developer, number of files changed (both at the repository level and by

developer), number of files removed by the developer, time of commit, and the combination of files changed. The strongest predictors, identified by

the standardized regression coefficients, are number of lines of code changed by the developer and number of files changed.

The best model for unusualness after showing information explains 11.9% of the variance (p <2.2e-16) and is composed from the following 7

profiles: number of lines of code changed by the developer, number of files removed by the developer, size of commits messages, and the combination

of files changed (the last 2 computed both at the repository level and by the developer).

The exploratory results confirm that our profiles can explain some aspect of unusualness and that especially size metrics are the strongest pre-

dictors. They also confirm that our profiles should not be used in isolation, but in concert with other mechanisms. This aligns with the results from

our presurvey and also with prior research observations.34

4.6 Threats to validity

4.6.1 Construct validity

Our current implementation of the profiles has limitations that threaten construct validity. First, we build developer profiles by grouping commits

by email address; we currently do not take additional steps to identify when 2 email addresses belong to the same developer, which makes developer

profiles potentially unreliable when the developer uses multiple email addresses.35 Second, we currently consider renaming of a file as addition of

one file and deletion of other, which can lead to size-based outliers for large renaming operations. Third, we ignore merge commits at this point.

Fourth, in our evaluation, we used a simpler implementation of the time-based profiles in which we set a fixed high anomaly score for commits at

times that on average contain fewer than 5% of all commits. Improving profiles, as well as additional profiles, will improve the anomaly reporting,

but we expect little impact on the overall results of our evaluation.

4.6.2 Internal validity

There are several biases that may influence the results. First, there is a selection bias in that developers who face problems with notification clutter

may be more inclined to respond to our survey. This most likely inflates the number of monitored repositories in our evaluation (see Figure 7), but

we do not expect this to significantly impact ratings of unusualness and importance.

Second, as we ask developers to rate the same commit again with additional information there is both a potential consistency bias (participants

tend to stick to their answers) and an opposite potential subject-expectancy bias (participants agree with suggestions). To reduce the consistency

‡ https://cran.r-project.org/web/packages/glmulti/



GOYAL ET AL. 13 of 16

bias, we pose 2 separate but correlated questions, Q1a and Q1b, regarding importance. To reduce subject-expectancy bias, we always provide 5

explanations independent of our anomaly score. Using separate questions, Q1a and Q1b, introduces the additional noise in our analysis, despite the

strong and statistically highly significant correlation between the 2 found in the pilot study. Although we addressed these biases in our setup, we

cannot entirely exclude their influence.

Third, our results might be biased by the aggregation method used to combine multiple indicators. We kept it constant to keep the experimental

design simple. It could be interesting to explore whether other aggregation methods provide better predictive results.

Fourth, the visual representation of commits with all lines of changed code may bias developers to focus overproportionally on size in their

judgment. We did not quantify this effect, but rather decided on a single visual representation that aligns closely with GitHub's view of a commit.

Finally, the use of stratified sampling, with most shown commits being unusual or very unusual by our measure (3 out of 5 commits shown), may

affect developers' perception of unusualness and affect their judgments about the commits.

4.6.3 External validity

We studied only commits in publicly available GitHub projects as assessed by developers with a GitHub account. Although we expect generally

similar characteristics, we cannot generalize our results to other version control systems and especially not to other development contexts with

different cultures and expectations toward commits (eg, end-user programming). In addition, to prevent overfitting of data, our approach is limited

to repositories with a given minimum size (50 commits in our evaluation) and developers with a given minimum number of commits (only developers

with at least 20 commits were considered for own profiles).

5 RELATED WORK

Change in software systems has been studied, measured, and modeled intensively for many decades.6,36-41 Change is inevitable; for example,

Lehman postulated that software “undergoes continual changes or becomes progressively less useful.”38 Instead of assuming stability or back-

ward compatibility, transparent environments and social-coding platforms promote change awareness by making information about changes

transparent.21,22 In practice and more traditional settings, developers often broadcast change announcements to others by email or through code

reviews to achieve transparency.37,42 Examples of achieving transparency through notifications reach back at least to Brook's descriptions of the

OS/360 development.18, Ch. 7 Similarly, awareness mechanisms have been successful to notify developers about potential conflicts during concurrent

development to seek collaborative solutions.43-47

Relying on notifications in transparent environments can quickly lead to information overload though.16-18,22 Because of information overload,

important information may get lost in a sea of noise. Several researchers and practitioners have attempted to identify those notifications that are

relevant to a specific developer. As described in the introduction, this includes detecting backward–incompatible changes in used APIs,19 priori-

tizing notifications based on code ownership,20 and highlighting commits that fix bugs or vulnerabilities.23,24 At a technical level, there are many

strategies that can identify the impact (and thus importance) of changes, typically referred to as change impact analysis.48-51 Similarly, there are many

techniques that can detect potentially defective changes, from static analysis52,53 to machine learning.54 Reiss furthermore explored a technique

to identify problematic code by detecting unusual patterns in the AST when comparing the code with a large corpus of known code.31 Our work

addresses the same problem but from a fundamentally different perspective. We do not envision our anomaly detection tool as a standalone filter-

ing mechanism, but as complementary building block to scale transparent environments. In addition, anomaly scores and explanations could easily

be integrated into a code review process, similar to Google's integration of static analysis tools.53

The 2 previous approaches that directly target reducing notification overhead19,20 (based on binary compatibility and code ownership; see above)

evaluate their approach only on proxy metrics without consulting developers, for example, approximating relevance by whether a developer has

subsequently modified a file. In contrast, we designed an experimental setup that allows to assess to what degree automated judgments on commits

actually match the developers' perception of importance for notifications by asking developers about commits relevant to them.

We use anomaly detection for a novel purpose. Chandola et al provide a comprehensive overview of the anomaly detection field,26 which

focuses on applications as diverse as intrusion detection, fraud detection, industrial damage detection, image processing, and traffic monitoring,

and which uses techniques as diverse as machine learning for classification, nearest neighbor, and clustering as well as various statistical and

information-theoretic approaches. Given the lack of labeled data (ie, known anomalies), we use an unsupervised learning strategy based on both

parametric and nonparametric standard statistical techniques. As we do not focus on anomalies among dimensions (eg, commits with many changed

lines but only few changed files), we detect anomalies separately for each dimension and aggregate them subsequently. If developers were willing

to tag commits as unusual or important, there is a wide range of supervised machine learning techniques that can be used to detect anomalies.26,55

Truede et al interviewed GitHub developers about what kind of information should be summarized in a development activity feed. The developers

consistently mentioned unusual events as being important.56 In addition, they propose a dashboard to detect unusual events in commit histories and

perform a preliminary evaluation with 6 interviews within a Brazilian company.34 Their interviewees mention similar reasons for what makes com-

mits unusual and their examples of unusual events align with the commits characteristics that we investigate in this paper. Our work complements

theirs with a substantially different model for detecting anomalies (eg, not assuming normal distributions, covering additional characteristics such



14 of 16 GOYAL ET AL.

as time of day) and a large-scale evaluation with 173 developers. At a technical level, we integrate our results in GitHub's interface with a browser

plug-in, instead of building a separate SVN-based dashboard.

In parallel to our research, Li et al57 investigate influential software changes and propose categories to identify them in an automated fashion

using machine learning classification techniques. Although they propose similar metrics that could also help developers to reduce the amount of

changes they need to inspect, their goal, study design, and technical approach are different from ours. First, their work aims at predicting influential

changes, which they imply could affect many aspects of a system later. They claim that detecting these changes at commit time could support devel-

opers in making better-informed decisions about their potential effects before they happen. In our work, we focus on unusual commits and aim at

reducing the amount of commits that developers have to review when changes occur. Second, both studies propose metrics based on intuition but

evaluate them differently. Their work uses a survey to evaluate categories of influential commits provided by the authors, while we survey develop-

ers to judge the unusualness of commits from repositories they are familiar with. Along with finding unusual commits, we also try to find which of

those unusual commits are actionable. Finally, their machine learning model based on classifiers and cross-validation and aggregation methods are

distinct from ours. To create their classifier, they tried out 2 standard techniques for classification tasks: Naïve Bayes and Random Forest. In con-

trast, our analysis based on established anomaly detection techniques26-29 aims at creating repository-specific profiles based on outliers from past

commits and at using these profiles to calculate anomaly scores for commits in the repository. Our approach also provides human-understandable

profiles and thresholds that are useful for explaining why commits are marked as unusual. In contrast, many machine learning techniques cannot

provide the same explanatory evidence.

Rosen et al58 propose a tool named “Commit Guru” that provides developers and managers with risk information of their commits. Similar to

our prototype, their tool relies on change measures to identify defect-inducing changes. Their measures have been validated against 11 large and

long-lived projects in a previous work59 and capture properties such as size, diffusion, purpose, and history of changes but also incorporate infor-

mation about developers' experience. Our work complements their study with a large-scale evaluation with 173 developers and reinforce the

importance of some their studied measures in characterizing important changes.

6 CONCLUSION

Transparent environments and social-coding platforms support developers in staying abreast of changes in projects of interest. However, the amount

of information produced can quickly overwhelm developers, making it harder for them to distinguish relevant changes from typical ones.

In this paper, we described an anomaly detection mechanism designed to identify unusual commits in repositories. We evaluated our mechanism

using a survey-based strategy to measure to what degree our model can predict changes developers judge as unusual and to what degree we can

identify commits that developers want to be notified about.

We learned that developers have distinct motivations when judging the importance commits and statistical outliers have only little predictive

power. However, once we present the reasons why these commits are unusual, developers often revisit their position and consider these commits as

relevant for notification. Also, we found that some characteristics that developers pay attention to (eg, commits with lengthy discussions or made

by not regular team members) can be profiled in terms of statistical outliers and integrated to existing prioritization and filtering approaches to

identify relevant changes in maintenance tasks. Our anomaly detection mechanism is a building block in scaling transparent environments.

ACKNOWLEDGEMENTS

Kaestner's work has been supported by NSF awards 1318808 and 1552944 and the Science of Security Lablet (H9823014C0140). Herbsleb's

work has been supported by NSF awards 1302522, 0414698, 1633083, and 1111750, as well as a grant from the Alfred P. Sloan Foundation

(G201513989).

ORCID

Raman Goyal http://orcid.org/0000-0003-3628-1388

REFERENCES

1. Gawer A. The organization of technological platforms. Res Socio Organizations. 2010;29:287-296.

2. Herbsleb J, Müller-Birn C, Towne WB. The VistA ecosystem: Current status and future directions. Technical Report CMU-ISR-10-124, Institute for
Software Research, Carnegie Mellon University; 2010.

3. Iansiti M, Levien R. The Keystone Advantage: What the new Dynamics of Business Ecosystems Mean for Strategy, Innovation, and Sustainability. Boston, MA:
Harvard Business Press; 2004.

4. Northrop L, Feiler P, Gabriel RP, et al. Ultra-large-scale Systems: The Software Challenge of the Future: Software Engineering Institute; 2006.

5. Cossette BE, Walker RJ. Seeking the ground truth: A retroactive study on the evolution and migration of software libraries. In: Proceedings of the
International Symposium Foundations of Software Engineering (FSE) ACM Press; New York, 2012:55.

6. Eick SG, Graves TL, Karr AF, Marron JS, Mockus A. Does code decay? Assessing the evidence from change management data. IEEE Trans Softw Eng (TSE).
2001 Jan; 27(1):1-12.

http://orcid.org/0000-0003-3628-1388
http://orcid.org/0000-0003-3628-1388


GOYAL ET AL. 15 of 16

7. Hammad M, Collard ML, Maletic JI. Automatically identifying changes that impact code-to-design traceability during evolution. Softw Qual J.
2011;19(1):35-64.

8. Hou D, Yao X. Exploring the intent behind API evolution: A case study. In: Proc. Working Conf. Reverse Engineering (WCRE). IEEE Computer Society; Los
Alamitos, CA, 2011:131-140.

9. Kapur P, Cossette B, Walker RJ. Refactoring references for library migration. In: Proc. Int'l Conf. Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA). ACM Press; New York, 2010:726-738.

10. Linares-Vásquez M, Bavota G, Bernal-Cárdenas C, Di Penta M, Oliveto R, Poshyvanyk D. API change and fault proneness: A threat to the suc-
cess of Android apps. In: Proc. Europ. Software Engineering Conf./Foundations of Software Engineering (ESEC/FSE) ACM Press; New York, 2013:
477-487.

11. Mattsson M, Bosch J. Stability assessment of evolving industrial object-oriented frameworks. J Softw Maintenance: Res Pract. 2000;12(2):79-102.

12. McDonnell T, Ray B, Kim M. An empirical study of API stability and adoption in the Android ecosystem. In: Proc. Int'l Conf. Software Maintenance (ICSM).
IEEE Computer Society; Los Alamitos, CA, 2013:70-79.

13. Mileva YM, Dallmeier V, Burger M, Zeller A. Mining trends of library usage. In: Proc. Workshops Principles of Software Evolution (IWPSE) and Software
Evolution (EVOL), IWPSE-Evol '09. ACM Press; New York, 2009:57-62.

14. Raemaekers S, van Deursen A, Visser J. Measuring software library stability through historical version analysis. In: Proc. Int'l Conf. Software Maintenance
(ICSM). IEEE Computer Society; Los Alamitos, CA, 2012:378-387.

15. Robbes R, Lungu M, Röthlisberger D. How do developers react to API deprecation? The case of a Smalltalk ecosystem. In: Proc. Int'l Symposium
Foundations of Software Engineering (FSE). ACM Press; New York, 2012:56:1-56:11.

16. Bogart C, Kästner C, Herbsleb J. When it breaks, it breaks: How ecosystem developers reason about the stability of dependencies. In: Proc. ASE
Workshop Software Support for Collaborative and Global Software Engineering; Lincoln, Nebraska, USA, 2015:86-89.

17. Bogart C, Kästner C, Herbsleb J, Thung F. How to break an API: Cost negotiation and community values in three software ecosystems. In: Proc. Int'l
Symposium Foundations of Software Engineering (FSE). ACM Press; New York, 2016:109-120.

18. Brooks FPJr.. The Mythical Man-Month. anniversary edition. Boston, MA: Addison-Wesley; 1995.

19. Holmes R, Walker RJ. Customized awareness: Recommending relevant external change events. In: Proc. Int'l Conf. Software Engineering (ICSE). ACM
Press; New York, 2010:465-474.

20. Padhye R, Mani S, Sinha VS. Needfeed: Taming change notifications by modeling code relevance. In: Proc. Int'l Conf. Automated Software Engineering
(ASE); 2014; Los Alamitos, CA:665-676.

21. Dabbish L, Stuart C, Tsay J, Herbsleb J. Leveraging transparency. IEEE Softw. 2013;30(1):37-43.

22. Dabbish L, Stuart C, Tsay J, Herbsleb J. Social coding in GitHub: Transparency and collaboration in an open software repository. In: Proc. Conf. Computer
Supported Cooperative Work (CSCW). ACM Press; New York, 2012:1277-1286.

23. Hindle A, German DM, Godfrey MW, Holt RC. Automatic classification of large changes into maintenance categories. In: Proc. Int'l Conf. Program
Comprehension (ICPC). IEEE Computer Society; Los Alamitos, CA, 2009:30-39.

24. Tian Y, Lawall J, Lo D. Identifying Linux bug fixing patches. In: Proc. Int'l Conf. Software Engineering (ICSE). ACM Press; New York, 2012:386-396.

25. Hindle A, German DM, Holt R. What do large commits tell us? A taxonomical study of large commits. In: Proc. Working Conf. Mining Software Repositories
(MSR). ACM Press; New York, 2008:99-108.

26. Chandola V, Banerjee A, Kumar V. Anomaly detection: a survey. ACM Comput Surv (CSUR). 2009;41(3):15:1-15:58.

27. Eskin E. Anomaly detection over noisy data using learned probability distributions. In: Proc. Int'l Conf. Machine Learning (ICML). Morgan Kaufmann
Publishers Inc.; San Francisco, CA, 2000:255-262.

28. Kou Y, Lu CT, Sirwongwattana S, Huang YP. Survey of fraud detection techniques. In: Proc. Int'l Conf. Networking, Sensing and Control, Vol. 2; 2004;
Taipei, Taiwan:749-754.

29. Raz O, Koopman P, Shaw M. Semantic anomaly detection in online data sources. In: Proc. Int'l Conf. Software Engineering (ICSE). ACM Press; New York,
2002:302-312.

30. Herraiz I, German D, Hassan AE. On the distribution of source code file sizes. In: International Conference on Software and Data Technologies; Seville,
Spain, 2011:5-14.

31. Reiss SP. Finding unusual code. In: Proc. Int'l Conf. Software Maintenance (ICSM). IEEE Computer Society; Los Alamitos, CA, 2007:34-43.

32. Gousios G, Spinellis D. Ghtorrent: Github's data from a firehose. In: Proceedings of the 9th IEEE Working Conference on Mining Software Repositories
(MSR); Zurich, Switzerland, 2012:12-21.

33. Schreier M. Qualitative Content Analysis in Practice: SAGE Publications; 2012.

34. Leite L, Treude C, Filho FF. Uedashboard: Awareness of unusual events in commit histories. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE). ACM Press; Bergamo, Italy, 2015:978-981.

35. Vasilescu B, Posnett D, Ray B, et al. Gender and Tenure Diversity in GitHub Teams. In: Proceedings of the 33rd Annual ACM Conference on Human Factors
in Computing Systems (CHI). ACM Press; Seoul, Republic of Korea, 2015:3789-3798.

36. Buckley J, Mens T, Zenger M, Rashid A, Kniesel G. Towards a taxonomy of software change: research articles. J Softw Maint Evol. September
2005;17(5):309-332.

37. de Souza CRB, Redmiles DF. An empirical study of software developers' management of dependencies and changes. In: Proc. Int'l Conf. Software
Engineering (ICSE). ACM Press; New York, 2008:241-250.

38. Lehman MM. Programs, life cycles, and laws of software evolution. Proc IEEE. 1980;68(9):1060-1076.

39. Madhavji NH. Environment evolution: the prism model of changes. IEEE Trans Softw Eng (TSE). May 1992;18(5):380-392.

40. Weiss DM, Basili VR. Evaluating software development by analysis of changes: some data from the software engineering laboratory. IEEE Trans Softw Eng
(TSE). February 1985;11(2):157-168.

41. Yau SS, Collofello JS. Some stability measures for software maintenance. IEEE Trans Softw Eng (TSE). 1980;6(6):545-552.



16 of 16 GOYAL ET AL.

42. Bacchelli A, Bird C. Expectations, outcomes, and challenges of modern code review. In: Proc. Int'l Conf. Software Engineering (ICSE). IEEE Computer
Society; Los Alamitos, CA, 2013:712-721.

43. Biehl JT, Czerwinski M, Smith G., Robertson GG. Fastdash: A visual dashboard for fostering awareness in software teams. In: Proc. Conf. Human Factors
in Computing Systems (CHI). ACM Press; New York, 2007:1313-1322.

44. Brun Y, Holmes R, Ernst MD, Notkin D. Proactive detection of collaboration conflicts. In: Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE), ESEC/FSE '11. ACM Press; New York, 2011:168-178.

45. Sarma A, Bortis G, van der Hoek A. Towards supporting awareness of indirect conflicts across software configuration management workspaces. In: Proc.
Int'l Conf. Automated Software Engineering (ASE). ACM Press; New York, 2007:94-103.

46. Sarma A, Noroozi Z, van der Hoek A. Palantír: Raising awareness among configuration management workspaces. In: Proc. Int'l Conf. Software Engineering
(ICSE). IEEE Computer Society; Los Alamitos, CA, 2003:444-454.

47. Sarma A, Redmiles DF, van der Hoek A. Palantír: early detection of development conflicts arising from parallel code changes. IEEE Trans Softw Eng (TSE).
2012;38(4):889-908.

48. Bohner SA, Arnold RS. Software Change Impact Analysis. Los Alamitos, CA: IEEE Computer Society Press; 1996.

49. Loyall JP, Mathisen SA. Using dependence analysis to support the software maintenance process. In: Proc. Conf. Software Maintenance (CSM). IEEE
Computer Society; Los Alamitos, CA, 1993:282-291.

50. Ren X, Shah F, Tip F, Ryder BG, Chesley O. Chianti: A tool for change impact analysis of Java programs. In: Proc. Int'l Conf. Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA). ACM Press; New York, 2004:432-448.

51. Rothermel G, Harrold MJ. A safe, efficient regression test selection technique. ACM Trans Softw Eng Methodol (TOSEM). 1997;6(2):173-210.

52. Hovemeyer D, Pugh W. Finding bugs is easy. Acm sigplan notices. New York: ACM Press; 2004:132-136.

53. Sadowski C, van Gogh J, Jaspan C, Söderberg E, Winter C. Tricorder: Building a program analysis ecosystem. In: Proceedings of the 37th International
Conference on Software Engineering - Volume 1 (ICSE); Florence, Italy, 2015:598-608.

54. Kim S, Whitehead EJ Jr., Zhang Y. Classifying software changes: clean or buggy? IEEE Trans Softw Eng (TSE). 2008;34(2):181-196.

55. Flach P. Machine Learning: The Art and Science of Algorithms that Make Sense of Data: Cambridge University Press; 2012.

56. Treude C, Filho FF, Uirá K. Summarizing and measuring development activity. In: Proc. Europ. Software Engineering Conf./Foundations of Software
Engineering (ESEC/FSE). ACM Press; Bergamo, Italy, 2015:625-636.

57. Li D, Li L, Kim D, Bissyandé TF, Lo D, Traon YL. Watch out for this commit! A study of influential software changes. Comput Res Repository (CoRR). 2016.
abs/1606.03266.

58. Rosen C, Grawi B, Shihab E. Commit Guru: Analytics and Risk Prediction of Software Commits. In: Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering (ESEC/FSE); Bergamo, Italy, 2015:966-969.

59. Kamei Y, Shihab E, Adams B, et al. A large-scale empirical study of just-in-time quality assurance. IEEE Trans Softw Eng (TSE). 2013;39(6):757-773.

How to cite this article: Goyal R, Ferreira G, Kästner C, Herbsleb J. Identifying unusual commits on GitHub. J Softw Evol Proc. 2017;e1893.

https://doi.org/10.1002/smr.1893

https://doi.org/10.1002/smr.1893

	Identifying unusual commits on GitHub
	Abstract
	Introduction
	Indicators for Important Commits
	Detecting Unusual Commits
	Overview
	Commit characteristics (metrics)
	Profiles
	Size-based profiles
	Time-of-day profiles
	File-type profiles

	Normalizing, aggregating, and explaining results
	Implementation

	Experimental Validation
	Experimental setup
	Question selection

	Recruitment and participants
	Analysis procedure
	Results
	RQ1: predicting unusual commits
	RQ2: unusualness to filter notification
	RQ3: efficiency

	Exploratory analysis
	Threats to validity
	Construct validity
	Internal validity
	External validity


	Related Work
	Conclusion
	References


